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Abstract

Learning in realistic environments remains a novel domain within the fields of artificial intelligence
and neuroscience from which researchers could step towards unveiling the principles of brain functionality
and advancing models in their capabilities. Focusing on reinforcement learning, this review addresses
the use of currently known principles from computational neuroscience and biology to tackle the
main challenges in the field, with particular emphasis on improving inductive biases and preventing
catastrophic interference. The current work proposes the interaction of two bio-inspired features, namely
neuromodulation of synaptic plasticity and memory replay as a promising avenue to face these obstacles
and to provide artificial systems with a human-like learning process. The majority of studies support
the idea that neuromodulation and memory replay are highly intertwined events, both needed for the
learning process in humans. Moreover, attempts at including these features in reinforcement learning
agents proved to be beneficial for the model’s performance in ecological settings. In this light, we explore
how spike timing can represent a valid substrate on which to implement both bio-plausible characteristics.
The framework of spiking neural networks is often utilised to represent and remember relevant features of
specific environments, especially in dynamic contexts with sparse rewards. However, the literature offers
different approaches to model both neuromodulation and memory representation, with varying degrees of
cross-compatibility. Finally, we explore the challenges in implementing these bio-inspired systems, allowing
computational models to aid current research, including neuromorphic hardware development, robotics,
and neuroscience.

1 Introduction

Characterizing the mechanisms behind the phe-
nomenon of learning especially in complex, realistic
environments, has always been a central question in
neuroscience. Behavioral studies of decision-making
in humans and animals were the first contributions
to the understanding of such a fundamental yet com-
plex process. Investigations on the subject started
through the theories of Pavlovian (classical) condi-
tioning (Pavlov, 1928) and instrumental (operant)
conditioning (Thorndike, 1927; Rodhom and Tol-
man, 1950). Empirically, these initial studies pro-
vided standardized means to quantify the processes
involved in behavioral decision-making and the role
of reward and punishment. Theoretically, aided by
the nascent field of mathematical psychology and by
significant advancements in control engineering (e.g.,
dynamic programming, Bellman, 1952), these stud-
ies provided important foundations for modern rein-
forcement learning (RL). For example, early math-
ematical formulations of classical and instrumental
conditioning (the Rescorla-Wagner rule, Rescorla and
Wagner, 1972) established the basis of what is now
known as temporal difference (TD) learning. The
ability to quantify, mathematically formalize and
validate behavioral (and subsequently neural) data
has since become central to our understanding of
animal behavior, learning and cognitive computing.
RL is the major modeling construct currently avail-
able in this domain, and it is often used to model
the behavior of an agent in a given learning envi-
ronment (Dayan and Niv, 2008). In these models,
agents learn the utility or value of certain choices
based on different inputs they receive as a conse-

quence of those choices (mainly reward inputs). In
the study of reward-driven learning (O’Doherty et
al., 2015; Sutton and Barto, 2018), RL paradigms are
employed to describe how the outcomes of certain ac-
tions drive the subjective values the learning agent
holds for these actions, as is the case in Q-learning
(Watkins, 1989; Watkins and Dayan, 1992), one of
the most common frameworks used in the field. This
conceptualization of learning differs from the other
two central theories of learning: supervised and un-
supervised learning. In supervised learning (SL), the
agent (or algorithm) is presented with the appro-
priate response (e.g. the correct output in a clas-
sification task) during the training phase; while in
unsupervised learning (UL) only the inputs are pre-
sented, and the agent learns to build a progressively
better data-driven representation of the structure of
such input without any additional information (as is
the case for clustering algorithms, for example). On
the one hand, the paradigm of RL shares similarities
with both: the presence of a guidance is in common
with SL (albeit in RL, the desired outcome is not
shown to the agent, but a measure of distance from
the target drives the agent towards a goal), while the
ability of the agent to self-organize useful represen-
tations is shared with UL. On the other hand, RL
differs fundamentally from these two, since the agent
learns by discovering actions that increase reward,
given the setting in which it operates. This means
the agent acquires some form of representation of
the environment (and/or its reward structure), but
just through the active exploration (and/or exploita-
tion) of the possible actions and states available in
that specific environment. Thus, central questions
in RL as a theory of animal learning revolve around
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the way in which such representations are formed,
how much they can be generalized and how should
they inform an action selection policy. These same
questions can become especially meaningful for this
field when we consider realistic environments, which
may be partially observable, noisy, uncertain and dy-
namic. Additionally, representations of reward struc-
ture and/or the dynamics of environmental state
transitions constitute an internal model of the task
(and of its setting) which the agent must acquire
by experience and whose internal structure may be-
come extremely complex. RL algorithms can in fact
be divided into model-free (MF) and model-based
(MB). These two classes of algorithms are distin-
guished by the extent (and the modality) with which
they allow the agent to form a representation of the
environment (Collins and Cockburn, 2020). MF al-
gorithms do not maintain an explicit model of the
environment they interact with. Instead, they allow
the agent to have a record of the acquired rewards in
such environment. This means a MF agent learns a
functional mapping between reward inputs and the
corresponding behaviors in its output. On the oppo-
site end, MB algorithms allow the agent to form ex-
plicit representations of the environment, which may
include the state and action spaces as well as the re-
ward functions and the transition functions (Collins

and Cockburn, 2020; Moerland et al., 2023). Both
approaches have their own shortcomings. MB RL
can come up with more elaborate and flexible action
plans but doing so often proves to be computation-
ally expensive or intractable, especially when the en-
vironment is complex and dynamic (Moerland et al.,
2023). MF algorithms are more tractable, but they
do not adapt as easily to changes in the environment
or to new settings (Calisir and Pehlivanoglu, 2019).
Moreover, some problems affect both approaches and
are generally present in the RL paradigm. One ex-
ample of a prevalent issue is catastrophic interfer-
ence, which occurs when a learning system loses pre-
viously acquired associations after the integration
of new knowledge from the environment. Another
important issue occurs when networks have a weak
inductive bias: having weak assumptions about any
given environment allows the agent to adapt to a
bigger number of challenges but requires much more
data during the training process (Botvinick et al.,
2019). Beyond the strictly modeling-related issues,
MB and MF are still active areas of debate when it
comes to the study of learning in the human brain.
The brain is thought to be a hybrid learning system,
able to exploit both MB and MF learning paradigms.
These two are integrated by relying on goal-directed
actions (result of MF learning) early on in the pres-

Figure 1: Scheme of the content and structure of this review (RL: reinforcement learning; STDP: spike-
timing-dependent plasticity). The neural perspective will be discussed in section 2.1, while the efforts to
model it will be covered in section 2.2.
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ence of novel stimuli and settings, while favoring ha-
bitual actions (result of MB learning) after more ex-
tensive training (Daw et al., 2005; O’Doherty et al.,
2015). This optimizes the way in which representa-
tions are formed during the learning process, since a
more detailed representation will be acquired only if
the environment requires it from the learning agent
(Wilson and Niv, 2012). Building such simple, gen-
eralized representations constraints the complexity
of the problem state-space and speeds up learning by
increasing computational efficiency, since the brain
avoids having to re-learn recurring environmental
patterns (O’Doherty et al., 2015). The exact details
of how MB and MF learning are combined in the hu-
man brain are still being studied and understood.
For a more thorough account of the currently known
biological and anatomical correlates of these, see sec-
tion 2.1.1. A deeper look into this dichotomy and in
how we can move past it remain central themes both
for the improvement of the current model’s perfor-
mance, and for increasing their biological plausibility,
advancing computational neuroscience in the ability
to explain learning in realistic, ecological settings. To
illustrate, MF algorithms become particularly impor-
tant in realistic environments where an explicit inter-
nal representation or a complete model is unattain-
able. Beyond the MB/MF dichotomy, however, there
are other important factors an agent needs to con-
sider when operating in ecological settings: observ-
ability, volatility, and sparse, dynamic reward struc-
ture. To address some of these complications and
solve RL problems in high-dimensional environments
with complex reward structures, deep artificial neural
networks (ANNs) have been successfully employed
to learn approximate value functions (Arulkumaran
et al., 2017). This approach, collectively known as
Deep-RL has fundamentally revolutionized the field,
allowing RL algorithms to tackle previously unsolv-
able problems. From a neuro-cognitive standpoint,
this combination is also conceptually insightful as
it may hint on potential solutions employed by the
brain to solve complex cognitive problems. In par-
ticular, the hierarchical nature of internal represen-
tations in deep ANNs combined with the ability to
approximate arbitrary value functions suggests simi-
lar processes may be at play in the mammalian brain
(Botvinick et al., 2020). Additionally, the shortcom-
ings of this approach may find useful solutions in the
brain’s mechanisms. Let us consider, when it comes
to generalization and adaptation to different types of
environments, weak inductive bias, which seems to
be the main challenge for deep-RL. This character-
istic is incompatible with the sparsity of inputs that
distinguish realistic from controlled settings. Once
again, the brain’s solution to weak inductive biases
is an active area of research. The mammalian brain

is an evolved architecture and the process of evolu-
tion by natural selection is itself a learning process
(postulated to be “learning by direct-fit” by Hasson
et al., 2020). For instance, the iterative optimization
process across generations of evolving species finds a
parallel in the iteration over samples we find in net-
works of neurons. In both cases, the gradual adjust-
ment of parameters improves the fit of the organism.
Natural organisms in general and brains in partic-
ular are overparameterized systems, where multiple
tunable parameters are potential learning targets.
However, the type and nature of their modifications
is subject to important physical and biological con-
straints. For example, cortical circuits exhibit de-
tailed balance between excitation and inhibition (the
E/I balance), which assures that the average weight
strength is scaled according to the number and type
of incoming synapses (van Vreeswijk and Sompolin-
sky, 1997), i.e. if excitation becomes too strong, in-
hibition needs to be re-balanced. This structural
constraint allows any given neuron to elicit spikes,
since it modulates its input based on the number of
incoming synapses and illustrates the fact that bio-
logical learning mechanisms are not allowed to freely
tune system parameters, but are constrained by the
system’s architecture and design. This overlap be-
tween the structural elements of a network and its
functions are at the base of the brain’s ability to op-
timize inductive biases, since it allows to efficiently
store learned rules and assumptions about the cur-
rent environment. Candidate solutions to strengthen
inductive biases in RL agents present varying degrees
of inspiration from the study of the brain. Some of
them tackle this problem (as well as other key is-
sues in the RL framework) by aiming to move past
the MB-MF dichotomy without taking any direct
inspiration from biology. This often entails allow-
ing the agent to form some sort of representation of
the environment without having an explicit, model-
based representation. A good illustration of this ap-
proach is given by Successor Representation algo-
rithms (SR), in which the value function is stored
along with a predictive but not explicit representa-
tion. This makes SR a hybrid between the compu-
tational efficiency of MF and the flexibility of MB
RL (Momennejad et al., 2017; Russek et al., 2017).
Other proposed solutions aim at getting closer to the
brain’s functioning without directly modeling any of
its features. Examples include a slow meta-learning
algorithm that aids generalization on top of a stan-
dard RL algorithm; for more detailed information on
this approach see Botvinick et al., 2019. Such fea-
ture resembles the role of prefrontal cortex (PFC)
in learning, which aids the activity of the dopamin-
ergic and cortico-striatal systems (O’Doherty et
al., 2015). The hierarchical architecture of the cor-
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tex also lends itself well to the implementation of
a Bayesian model, which could aid in carrying out
“imprecise computations”, useful to face sparse re-
ward environments (Findling et al., 2020). Lastly,
some methods to overcome the issues with modern
RL include taking more direct inspiration from the
process of learning that occurs in the brain by im-
plementing biologically-plausible features and ex-
plicitly modeling the mechanisms. Arguably, this is
the most explanatory approach as model parameters
and variables can be directly mapped onto known
biophysical processes. In this review, we discuss two
main approaches to construct biologically-plausible
RL models, and whether they can be exploited in
synchrony to maximize the efficiency and the per-
formance of RL agents. The first approach aims at
building plasticity in the network to have a better
method of updating what is learned, in a contingent
way with what is being rewarded to the agent. A
second, biologically inspired feature consists in im-
plementing internal generative replay to aid general-
ization in changing environments.

2 Literature Overview

2.1 Learning in the brain

2.1.1 Learning modalities in animals and hu-
mans

In order to make sense of which biological features
we want to base our models on, we will now ana-
lyze the components and modalities of the learning
processes in the mammalian brain, and the compu-
tational bases that could be of interest for the im-
provement of such models. Differently from most
artificial systems, the brain is thought to implement
all the aforementioned paradigms of learning (SL,
UL, RL) in different regions and sub-networks, and
rarely employs one single modality in isolation. Su-
pervised learning in the human brain is thought to
be implemented in a network of regions including
the prefrontal cortex (involved in error-correction
during rule-based learning) and the parietal cortex
(implicated in updating value representations during
decision-making). Depending on the task at hand,
additional structures like the hippocampus or the
cerebellum can also be involved. One example of the
usage of SL in the human brain is the acquisition of
new motor skills, such as learning to play a musical
instrument. As a person learns to play an instru-
ment, the brain receives feedback on the accuracy of
movements and adjust them in accordance with the
desired output. In this process, the cerebellum gives
the direct supervisory signal, constituting a form of
SL, and communicates with the primary motor cor-

tex and the premotor cortex in the planning, execu-
tion, and formation of internal models of movement
(Krakauer and Shadmehr, 2006; Doyon et al., 2002).
An instructing signal able to constrain the behav-
ior of the learning agent does not need to originate
from a supervised learning process. An illustration
of this concept in the brain comes from evolution of
innate behaviors. Animals show a diverse set of in-
nate behaviors able to contribute to the organism’s
fitness in its surroundings. This means that learning
from experience (in the span of an individual’s life-
time) is just one of the brain’s methods to aid adap-
tation, but if we refer to learning as “encoding sta-
tistical regularities from the outside world” (Zador,
2019) we cannot ignore the strict rules that emerge
from the learning process of evolution. In his work,
Zador, 2019 argues that although evolution acts on
the brain wiring in an indirect fashion, its effects on
the genome and, consequently, on brain structure
and behavior, are a strong example of a learning sig-
nal coming from a non-supervised process.

As previously stated, in unsupervised learning
a model is trained to discover patterns and relation-
ships in a dataset without the use of labeled exam-
ples or explicit supervision (Bengio et al., 2013). UL
has also been found to play a significant role in the
human brain for the development of sensory systems,
as is the case for the infants’ ventral visual stream
(Higgins et al., 2016; Bremner et al., 2015), and for
the formation of internal representations of the stim-
uli conveyed by such systems (Kohonen, 2001; Zador,
2019). During the first few months of life, the hu-
man brain finds itself in an environment with a vast
amount of previously unexperienced information;
to make sense of this information, the brain must
learn to extract meaningful patterns and relation-
ships from its input and does so by grouping related
stimuli together and forming categories, or clusters
(Kohonen, 2001). Similarly, when we encounter a
new experience, the brain must select and store what
is relevant about it in a way that allows it to es-
tablish a coherent sensory representation of its sur-
roundings. Although some responses to visual stimuli
are innate and accomplished via genetically deter-
mined behavioral rules, the progressive construction
of an internal sensory representation in a developing
animal is thought to be carried out via UL (Zador,
2019). There is also evidence that UL mechanisms
may be involved in higher cognitive functions, such
as language processing (Bengio et al., 2013). In this
field, research has shown that the brain is capable of
learning the structure of a new language without ex-
plicit instruction (Li and Zhao, 2013) suggesting that
UL mechanisms may be involved in this process.

Lastly, anatomical and functional correlates of
RL can be found in the human brain. An example is
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2.1 Learning in the brain

the striatum, a brain region involved in motor con-
trol and reward processing, which is activated during
RL tasks (Averbeck and O’Doherty, 2022). Instances
of other areas associated with RL in the brain in-
clude the amygdala, which is involved in process-
ing emotional information and learning from pun-
ishment (performing cost and benefit integration),
and the PFC, which is involved in working memory
and executive function in decision-making (Dixon
and Dweck, 2022). Specifically, the orbitofrontal cor-
tex appears to be the most active prefrontal area in
learning from feedback (Groman et al., 2019; Costa
and Averbeck, 2020). Interestingly, MF and MB RL
also find their correlates in areas and substructures
of the brain. The dorsal striatum (DS) is activated
during tasks that involve the use of a learned value
function (Jessup and O’Doherty, 2011). Thanks to
the wide span of regions it communicates with (in-
cluding the hippocampus, for spatial navigation,
the amygdala, for emotional information, but also
the motor cortex, which is responsible for initiat-
ing movement), the DS (in particular the dorsolat-
eral striatum) is believed to contribute to the goal
of maximizing future rewards in a MF fashion (van
der Meer et al., 2010; Skelin et al., 2014; Geerts et
al., 2020). Furthermore, several studies investigated
the role of the ventral striatum (VS) and the PFC in
MB RL (McDannald et al., 2011; Daw et al., 2011).
The VS is thought to contribute to the learning of
action-outcome associations: substructures of this
region seem to cover different roles in updating the
model of the environment based on new informa-
tion (for instance probabilistic versus immediate re-
wards, or feedback-independent information, Filimon
et al., 2020). Additionally, the action of neuromodu-
lators like dopamine seems to influence the balance
between model-based and model-free approaches
by acting on the VS and the lateral PFC to exert
a form of behavioral control (Deserno et al., 2015).
The upcoming section will discuss in more details the
computational relevance of neuromodulation in the
brain, and why such event is crucial to understand
information processing in RL.

2.1.2 RL, plasticity, neuromodulation

Extensive research on learning and synaptic plastic-
ity stemmed from the first studies by Donald Hebb,
according to which neurons in close proximity that
are frequently co-active will form stronger synapses
(Hebb, 1950). Hebbian learning principles find strong
experimental support in their proposed physiolog-
ical correlates: long-term potentiation (LTP) and
long-term depression (LTD) (Bliss and Lømo, 1973).
These two events modulate the strength of synapses

according to the correlation and timing of activa-
tions of pre- and post-synaptic neurons (synchronous
firing causes LTP while asynchronous firing causes
LTD). Different spiking behavior over time seems to
adjust synaptic strength by causing an increase or
a decrease of exposed receptors for the neurotrans-
mitter involved in that synapse. More details about
the mechanisms of post-synaptic receptor exposure
in LTP and LTD can be found in the works of Za-
manillo et al., 1999; Giese et al., 1998; and Nabavi
et al., 2014. This means learning as a phenomenon
must be linked to permanent (yet plastic) changes in
synaptic structure over time, but the plausible mech-
anism for the brain to implement such changes and
make them contingent on what is being learned is
still an active area of research (Pawlak, 2010; Anisi-
mova et al., 2022). Spike-timing-dependent plasticity
(STDP), as a particularly prominent biological im-
plementation of Hebbian learning, could represent a
learning rule able to support the phenomena of LTP
and LTD in brain circuitry. However, spike-timing
alone cannot accomodate all empyrical observations
on LTP/LTD and many additional factors such as
dendritic location, local interactions between neigh-
bouring synapses, and local signaling molecules could
influence plasticity as well (Brzosko et al., 2019).
Furthermore, the role of STDP as a learning rule
requires further research, since many of the findings
do report the presence of STDP in vitro, under spe-
cific stimulation protocols that have been argued to
be implausible. Additionally, in vivo circuits have
significant complications in the rules for synaptic
plasticity (Caporale and Dan, 2008). Crucially, in
this conceptualization of plasticity, spike timing is a
primary factor for learning to occur, since it drives
the strengthening and weakening of connections in-
volved in forming a representation of the environ-
ment and of its rewards. However, when considering
the macro-circuitry that most directly approximates
the implementation of reinforcement learning in the
brain: the cortico-striatal system (Fisher et al., 2017;
Badre and Frank, 2012; Frank and Badre, 2012), it
is evident how at this scale, spike timing represents
a necessity for the reinforcement signal, but is not
sufficient to describe how learning occurs. A purely
Hebbian perspective does not seem to be sufficient,
and additional learning rules need to be taken into
consideration. Specifically, the timing of these spik-
ing events (milliseconds) as well as the dependence
of learning purely on pre- and post-synaptic correla-
tions, seems to be incompatible with the time scale
with which behavior occurs (usually from hundreds
of milliseconds to few seconds) and with the need for
an external reward to be integrated into the learning
process. An additional element is proposed to bridge
this gap in biological systems: neuromodulation (Br-
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2.1 Learning in the brain

zosko et al., 2019). Plasticity in larger brain areas
is usually under the control of neuromodulatory fac-
tors, which act at a slower time scale and often in-
fluence the connectivity of whole networks instead
of affecting specific synapses (Zoli et al., 1998; Mat-
suda et al., 2009). In the brain, neuromodulators are
a vast family of signaling molecules which includes
the classes of catecholamines, as well as serotoner-
gic and histaminergic factors. These usually act at
a distance and are produced by cell bodies placed in
separate nuclei, with long projections that reach the
areas of interest (for instance, the thalamus or the
cortex). A common example of neuromodulator is
represented by the dopamine molecule and its influ-
ence on cortical networks to signal reward prediction
errors (RPEs; Björklund and Dunnett, 2007). The
introduction of neuromodulators in our conceptual-
ization of learning is not only an attempt to blindly
mimic biological systems, but it carries great signif-
icance in developing a biologically plausible learning
rule: where pre- and post-synaptic spiking activity
were the first two factors to determine the state of
synapses in a network, neuromodulation will be re-
ferred to as the third factor, which has the unique
and crucial role of carrying information about the
success of an action (and the associated reward),
shaping the representation of a certain environment
and bridging the relevant timescales. Differently
from a purely Hebbian account on learning, this up-
dated learning rule would assume the following form:

∆Wi,j ∝ F (pre, post,MOD) (1)

where Wi,j represents the weight of a synapse
in the network, the change of which is a function
(F) of the spiking frequencies or timings of pre- and
post-synaptic neurons (the local parameters ”pre”
and ”post”) and of the concentration or presence of
neuromodulation (the global parameter ”MOD”).
Taking into account a three-factor learning rule be-
comes extremely important when considering rein-
forcement learning, since the information relative to
the reward shapes the internal representation and
ultimately, the behavior of the agent. This carried
information will then be used by the brain to ad-
just synaptic weights in the network according to the
rules determined by the first two factors. Therefore,
a purely Hebbian account of pre- and post-synaptic
spike timing does not directly cause synaptic plas-
ticity, but rather makes some synapses eligible to be
reinforced by the concurrent action (the events can
be separated by a window of approximately 1 sec-
ond) of neuromodulation (Fisher et al., 2017). This
concept, known as eligibility traces, will be further
explored in section 2.1.3. In their review, Triche et

al., 2022 explore the present efforts in integrating
reward-contingent STDP (R-STDP, here referred to
as neoHebbian Learning) in a RL agent, and how
to include neuromodulation in the same model to
obtain a more efficient and biologically plausible
method of learning. More about the contribution of
biologically inspired learning rules for plasticity and
neuromodulation in the modeling field can be found
in section 2.2.2.

2.1.3 Learning and memory replay

In broad strokes, memory in the brain can be de-
scribed as an adaptive phenomenon linked to the
emergence of neural activity able to last longer than
the input which caused it (Chaudhuri and Fiete,
2016). The mechanisms of memory consolidation are
likely ubiquitous in the brain and shared among ev-
ery self recurrent network. They involve a vast net-
work of intracellular pathways which convert electri-
cal activity to the states of different chemical vari-
ables. One of the (computationally most explored)
consequences is known as persistent activity, result-
ing in a population of neurons being able to sustain
elevated firing rates in the absence of external input.
When an input is given to the network, the activity
over time of its neurons increases, and the self recur-
rent projections sustain this increase creating a pos-
itive feedback, as illustrated in Figure 2. From the
perspective of neural dynamics, persistent activity is
a distinguishing feature of a system able to reach a
bistable state. In this case, the network will have ac-
cess to two different regimes of firing rate over time
(attractors of the network’s dynamical system, Fig-
ure 2), depending on whether the information in in-
put is being retained or not. Of course, spike tim-
ing and network plasticity are also conventionally
linked to the ability of the network to process infor-
mation, which means that in the brain, processing
information and storing it are two operations car-
ried out by the same computing structure, a feature
that greatly aids the efficiency of biological neural
networks. A deeper dive into the computational prin-
ciples of memory in biological neural networks can be
found in the works of Chaudhuri and Fiete, 2016 and
Gallistel and King, 2009.

In addition to this feature, humans as learning
agents have another important element dedicated to
information consolidation: the hippocampus. This
specialized region is implicated in the consolidation
of semantic and episodic memory (Burgess et al.,
2002; Duff et al., 2020). Taking spatial navigation
as an example, the hippocampus is equipped with
functionally specialized cell types such as place cells,
grid cells and head direction cells, which are acti-
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2.1 Learning in the brain

Figure 2: Descriptive illustration of the positive feedback dynamics that allow for bistability regimes.
When the positive feedback-like input (solid line) overcomes the intrinsic decay factor of the system (dashed
line), the system’s activity is increased, and viceversa. White circles represent the attractors of the system.
This ”leaky switch” dynamic is found at different scales: from the molecular (Lisman, 1985) to the neural
population level (Durstewitz and Seamans, 2006). Figure adapted from Chaudhuri and Fiete, 2016

.

vated by the animal’s location and movement. These
neurons are thought to allow the brain to retain the
salient aspects of an environment which can then be
translated to new settings (E. I. Moser et al., 2008).
They are therefore carrying out two main functions:
the formation of setting-specific place maps, which
relies on mechanisms for long-term plasticity, and
the generalization of previously learned experiences
(in this example, features of known environments),
made possible by a generative replay of past mem-
ories (M.-B. Moser et al., 2015), a process emerging
from the interactions between the hippocampus and
cortical areas. This replay function represents a di-
rect link between memory and learning in the brain,
and allows an efficient interplay of the two events.
The biological bases of hippocampal replay are to be
found in high-frequency network oscillations referred
to as sharp-wave ripples. These events are charac-
terized by specific patterns of activity over time and
seem to encode for salient information about a prior
behavior and its rewards, or a generated reenact-
ment of independent experiences, useful to explore
novel routes potentially leading to remembered goals
(Pfeiffer, 2020). Furthermore, the number of ripple
events seems to be linked to the magnitude of the
reward as well as the reward prediction error associ-

ated with the replayed behavior (Roscow et al., 2021;
Igata et al., 2021). This feature is useful for mem-
ory recall, navigational planning, and reward-based
learning (Roscow et al., 2021; Ólafsdóttir et al.,
2018). Importantly, generative replay is often inac-
tive during the learning process, and it mainly takes
place offline, i.e., during sleep (Lewis et al., 2018), or
during an awake state in which no task is performed
(Pfeiffer and Foster, 2013). This grants the ability
to generalize salient features regardless of the cur-
rent learning environment being experienced by the
organism. Generative replay has recently been intro-
duced in ANNs (van de Ven et al., 2020) and in RL
agents (Roscow et al., 2021), and has been shown to
aid generalization and computational efficiency of the
models. The anatomical link between memory and
learning is given by hippocampal interareal projec-
tions, which aid the long-term storage of memorized
information. These include interactions with the cor-
tex and connections via the previously mentioned VS
(linked to MB-like representations) leading to the
Ventral Tegmental Area (VTA), a region implicated
in dopaminergic production (Cazé et al., 2018; Roth-
schild et al., 2017). Such anatomical architecture
seems to reflect the need to consolidate information
and integrate it in a model of the environment which
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2.2 Learning from the brain: models of learning

includes actual and predicted experience and reward
distributions (Lowet et al., 2020). This makes the
hippocampal replay buffer especially meaningful in
the context of RL, given the importance of exploit-
ing acquired knowledge about previously explored
reward contingencies. Crucial functional parallels
between the role of memory in the brain and in RL
agents can also be drawn at the lower, ”mechanistic”
level of memory implementation described above. In
the hippocampus, the process of generating, selecting
and maintaining memories is highly dependent on
oscillations in the neural networks of relevant areas,
mainly sharp-wave ripples (SWR) and theta waves
(prevalent during sleep) (Joo and Frank, 2018; Boyce
et al., 2016). In turn, these oscillatory events are just
one modality of processing, and as any other in the
brain, they are sustained by differential spike timing
in neural populations, which affect the connectivity
of the areas. As described beforehand, this means
that the consolidation or weakening of the resulting
memories is essentially mediated by STDP. The co-
incidence of pre- and post-synaptic activity present
in any network processing information, allows for
the creation of a (synaptic) memory trace that can
be stored and integrated within existing representa-
tions. As illustrated by equation 1, some regions of
the brain pair the changes in synaptic weight result-
ing from spiking activity with a third factor, namely
neuromodulation. Thus, three factor learning occurs
with synaptic memory traces, and represents a mem-
ory function in the brain, as described by Gerstner
et al., 2018:

d

dt
Wi,j = ei,jMOD(t) (2)

where MOD is the global third factor of neu-
romodulation, and ei,j is a variable set according
to coincidences between pre- and post-synaptic ac-
tivity. ei,j represents a correlation detector of the
pre-synaptic neuron firing and the post-synaptic
state, we previously referred to it as eligibility trace
(Gerstner et al., 2018). Several biological events
sustain and originate synaptic traces: from pre-
synaptic voltage-gated channels and receptors to
post-synaptic receptors and calcium gradients, but
ultimately these events are triggered by pre- and
post-synaptic spikes and are a common trait of com-
putation in the striatum, the cortex, and the hip-
pocampus (Fisher et al., 2017; Lim et al., 2020; Bit-
tner et al., 2017). They allow the brain to hold data
in the circuit that processes it, flagging specific in-
formation that needs to be updated. The idea of an
eligibility trace that can highlight relevant informa-
tion and make them modifiable was at first concep-
tualized in RL modeling paradigms. For instance, in

some TD learning methods, only the eligible states
or actions can undergo learning changes in the pres-
ence of an error (Gerstner et al., 2018). More on el-
igibility traces in the RL field can be found in sec-
tion 2.2. Additionally, the relevant information high-
lighted by eligibility traces can be related to reward
expectation, and be therefore influenced by neuro-
modulatory activity (Pan, 2005). As shown, the bio-
logical substrate of memory in the brain can offer a
directly compatible method to implement eligibility
traces into a three factor learning rule, tying learn-
ing and memory to the same underlying mechanisms
of plasticity, and offering a suitable way to aid the
efficiency of learning agents.

2.2 Learning from the brain: models
of learning

2.2.1 Modeling learning modalities

The three described conceptualizations of learning
(SL, UL, RL) originated from the engineering field,
and for each and every one of them different meth-
ods of implementation, algorithms and architectures
were developed, with a wide range of applications.
SL has mainly branched into two paradigms: regres-
sion and classification. Regressors predict continuous
values, while classifiers map the input space into dis-
crete categories (Nasteski, 2017). They both have a
long list of use cases, especially when implemented
onto deep ANNs, including image recognition, nat-
ural language processing, and predictive analytics
(Makantasis et al., 2015; Caruana and Niculescu-
Mizil, 2006), but classification models are currently
the ones with higher practical relevance (Sen et al.,
2020). Although efforts in integrating biologically
plausible features in supervised learning are present,
they are mainly limited to the introduction of classic
STDP-based rules in spiking neural networks (SNNs;
Hao et al., 2020). For SNNs, a fundamental ceiling is
given by the fact that the backpropagating instruc-
tive signal of SL cannot be directly implemented,
since the neuron’s spikes are non-differentiable func-
tions. Approaches to this issue attempt at employing
differentiable surrogate gradients, to enable spike-
timing-dependent backpropagation (Neftci et al.,
2019; Rathi et al., 2020). Other attempts with simi-
lar goals include the mixing and optimization of dif-
ferent learning paradigms (for instance, SL and UL;
Bekolay et al., 2013). This avenue also led to the
creation of hybrid paradigms like semi-supervised
learning (Yang et al., 2022), the analysis of which
is beyond the scope of this review. UL can be em-
ployed to carry out clustering tasks as well as dimen-
sionality reduction, and they are also used to build
generative models. The first two applications re-
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late to the ability of the network to place input data
points into a high dimensional feature space. Clus-
tering algorithms group data points based on their
similarity, represented by the relative position in the
input space itself (Sinaga and Yang, 2020). Dimen-
sionality reduction techniques are useful to reduce
the number of features in the given dataset without
losing important information about the input and
the relations between its data points (Arulkumaran
et al., 2017). Applications of these methods include
data segmentation and visualization, as well as im-
age and speech recognition. Generative models also
learn the underlying distributions of data, but they
use it to generate new samples that are similar to
the original input. Application of generative mod-
els include generative adversarial networks (GANs),
enhanced classifiers in which the output of a gener-
ative encoder is given as input to a decoder along
with actual input data. As the encoder learns to gen-
erate more and more realistic data, the decoder will
learn to discriminate it from the real input (Radford
et al., 2015). In terms of biological plausibility, UL
has also been successfully implemented in SNNs fol-
lowing STDP rules (C. Sun et al., 2022; Masquelier
and Thorpe, 2007). This implementation is fairly di-
rect since Hebb’s rule depends only on local factors
(pre- and post-synaptic activity) and does not re-
quire any external supervisory signal (Gerstner et al.,
2014). Furthermore, UL algorithms can be designed
to perform computations locally, without requiring
centralized processing. This relieves computation
from the SNN to redistribute it to decentralized sub-
networks, a feature able to introduce parallel pro-
cessing of input and to mimic the properties of spa-
tial interaction in biological neurons (Saunders et
al., 2019). Local computation can also help to cre-
ate a hierarchical structure in the model, breaking
down the performed task by fitting parts of it to dif-
ferent local sub-circuits and later merging them in a
common representation (usually of lower dimensions;
Lawrence K. Saul and Sam T. Roweis, 2003), a fea-
ture that is reflected at the mesoscopic level in the
brain, for instance in the hierarchy of areas involved
in visual processing (Hochstein and Ahissar, 2002).
Interestingly, UL has been extensively used to aid
other forms of learning. By learning from the struc-
ture of the data, UL can help to improve the perfor-
mance of supervised models and reduce the need for
large amounts of labeled data. UL can also aid RL
functionality, especially when implemented with lo-
cally connected networks (Weidel et al., 2021). This
avenue is particularly relevant in biologically plausi-
ble models of learning, since learning in completely
new environments requires updating representations
in an unsupervised fashion, which emerges from the
activity of specialized cell types in different brain

networks. Partitioning a SNN (specifically, its input
space) to perform a specific RL task does not gener-
alize well to realistic environments and, although it
aids output performance for the desired task, it has
the drawback of not reflecting the brain’s function-
ality (Frémaux et al., 2013). Thus, letting synapses
between input and representation layers in the model
be sorted in an unsupervised way can be a more de-
sirable mechanism when operating in ecological set-
tings. Conversely, the co-expression of unsupervised
Hebbian signals and reinforced (reward-based) adap-
tations in the same model does not come without
some pitfalls in its implementation (Fremaux et al.,
2010; Frémaux and Gerstner, 2016). As described in
section 1, RL emerged at first as an approach to ex-
plain different aspects, from animal conditioning to
control theory, and later developed into a paradigm
able to manage the actions of any agent into an in-
teractive environment. The classical applications of
RL were at first related to the spatial navigation of
an agent in a reward based setting, but the paradigm
is often applied to a variety of cognitive tasks that
can deliver iterative feedback to the learning agent.
Current real-word use cases of RL include robotics,
autonomous navigation, resource allocation and rec-
ommendation systems; more on these applications
can be found in section 3.2. The next sections high-
light the importance of integrating biologically plau-
sible features into RL models (in this case plasticity,
neuromodulation and memory replay) to expand the
use cases of this paradigm both inside and outside of
research.

2.2.2 Modeling plasticity and neuromodula-
tion

As stated in section 2.1, recent literature highlights
the importance of neuromodulation of Hebbian plas-
ticity in RL, attention, and memory consolidation
(Brzosko et al., 2019; Brea and Gerstner, 2016).
Since SNNs compute on discrete events in time, the
input is usually converted into spike trains, and en-
coded by differential spike timing of neurons. Other
than the input population, deep SNNs (SDNN) ar-
chitectures can also be employed, in which subse-
quent layers respond to different features of the task
at hand, and do so relative to the timing with which
they receive the input. Following STDP, some form
of synchrony (local correlations) between popula-
tions is usually determined to be the cause of synap-
tic modifications. This could be directly related to
the neuron’s firing frequencies in more biologically
detailed models (Beyeler et al., 2013; Nessler et al.,
2009), or it could consider the neurons that first re-
ceive the spikes from the input population to manage
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the consequent weight adjustments (usually employ-
ing integrate-and-fire neurons, with simplified rules
for determining threshold potentials, as in Kherad-
pisheh et al., 2018; or Saunders et al., 2019). It is
often the case that these networks implement some
form of winner-takes-all dynamics (WTA), associ-
ating input and learned response to the strength-
ening of some synapses and the weakening of oth-
ers. STDP in SNNs finds application in a variety of
tasks. An example is image processing, in which the
model employs SNNs with STDP rules in its whole
architecture, including convolutional layers (in which
the spiking activity is linked to feature recognition
based on input from previous layers) and pooling
layers (which propagate the spike pattern of feature-
specific layers) (Kheradpisheh et al., 2018). Other
examples include models able to carry out catego-
rization and decision-making using Izhikevich neu-
rons (Izhikevich, 2003), a simplified, phenomeno-
logical neuronal model comprising intrinsic adap-
tation and spike generation mechanisms, in which
STDP is programmed to emerge from the firing be-
havior caused by the neuron’s biophysical proper-
ties (Beyeler et al., 2013). Naturally, focusing on the
paradigm of RL, a reward-linked signal is essential
for the model’s functionality in linking plasticity to
the internal representations of environments. Be-
sides, neuromodulatory signals are causal determin-
ers of performance, regardless of whether they are
implemented to influence representation, action pol-
icy, or other learnable elements (Xing et al., 2020;
Velez and Clune, 2017). Still, merging neuromodula-
tion with STDP offers a method of updating synap-
tic weights that is compatible with spiking events
and simultaneously provides a biophysically inspired
solution to the credit assignment problem, that usu-
ally requires bridging multiple timescales (see equa-
tion 1). For this reason, the integration of STDP and
neuromodulation emerged as a logical step in the RL
field, and constitutes an extremely promising avenue
for research and technology development.

This ”convergent evolution” of RL models is
attested by the fact that the framework of three
factor learning (Kuśmierz et al., 2017), with neu-
romodulation acting on top of some plasticity rule,
is described and referred to in various contexts, al-
beit with some difference in the way it is imple-
mented. Examples include neoHebbian plasticity
rules (Triche et al., 2022), behavioral time scale plas-
ticity (Gerstner et al., 2018; Bittner et al., 2017),
reward-modulated Hebbian learning (Hoerzer et al.,
2014; Pfeiffer, 2020), and tag-triggered consolidation
(Bin Ibrahim et al., 2022; Luboeinski and Tetzlaff,
2021; Okuda et al., 2021). In all these models, the
relevance of introducing neuromodulation is based on
the same underlying rationale with which it is imple-

mented in the brain (see section 2.1.2). Referring to
Equation 2, a functional model that can implement
three factor learning will have two basic require-
ments: some form of local indicator of pre- and post-
synaptic correlation that can exert a flagging func-
tion over time, and a global variable for neuromodu-
lation able to link weight changes to external inputs.
Focusing on the first element, the eligibility trace
ei,j should be a signal that enhances the strength of
some synapses based on the global second variable
MOD, and decays over time. This means ei,j should
have a relatively long time constant τe (longer than
the time constant for Hebbian modifications) that
can link Hebbian plasticity to reward modulation,
and should approximately correspond to the duration
between starting an action and receiving a reward,
i.e. should be able to solve the distal-reward prob-
lem. This can be seen as one of the core challenges
of biologically plausible RL agents: determining the
proper credit to be given to synaptic weights based
on their role in producing positive or negative out-
comes over time with spiking neurons (Triche et al.,
2022). A convenient angle from which this problem
can be tackled is TD learning with eligibility traces,
referred to as TD(λ). In classical TD learning, the
value of a given state is bootstrapped from previous
rewards and from the expected utility/value of subse-
quent states. As mentioned in section 1, the concepts
proposed by the field of dynamic programming are
similar to the ones in TD learning, albeit developed
for different purposes. In his work on the topic, Bell-
man, 1952 describe the utility of a state in which the
agent is placed as the return the agent is expected
to obtain if starting from that state and following a
policy π:

V (St) = Eπ[Rt+1 + γV (St+1)] (3)

Where V (St) is the utility or value of being in
the current state, V (St+1) is the value of the next
state, γ is a temporal discounting factor (how future
rewards weight on the current value) and R is the
reward expected when the agent is in state St and
takes the action prescribed by the policy, π(s). The
principle behind this equation is used in TD learn-
ing to construct predictions about subsequent tem-
poral steps in the task, which can inform a target
(Rt+1 + γV (St+1) in equation 4), to estimate the
return of certain actions. Its simplest form, TD(0),
introduces a learning rate, or step size parameter α
for the update process, as described in equation 4:

V (St)←V (St)+α[Rt+1+γV (St+1)−V (St)] (4)
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TD(λ) introduces an eligibility trace (λ) for each
state, that acts as a multiplier on the TD error in
the value update equation, obtaining this general up-
date rule from Triche et al., 2022:

V (St)←V (St)+αλt(St)[Rt+1+γV (St+1)−V (St)] (5)

The value of the trace keeps track of how fre-
quently a state has been visited and how recently
these visits took place. The idea behind eligibility
tracing in RL models is that states that were visited
often before a reward, gain higher significance during
learning, and their relevance has a limited lifespan
in time. Thus, the trace itself must be updated it-
eratively, and different strategies are employed to
capture what is essentially the effect of the time con-
stant τe. The trace can be integrated via a simple
update rule that governs the TD(λ) equations or, in
a SNN, it can be made contingent to pre- and post-
synaptic spiking (and the relative probabilities of the
two events). These two approaches to update eligi-
bility traces are commonly shared between models
of STDP, but different hybrid solutions between bio-
logically inspired and iterative updates of eligibility
traces are also employed; moreover, the concept of an
eligibility trace itself offers an ideal ground to imple-
ment neuromodulatory events, which will also differ
depending on the model setup. The literature pro-
vides a wide span of implementations, ranging from
biologically detailed models able to closely mimic ex-
perimental conditions of in vitro and in vivo circuits
(Ziegler et al., 2015; Hoerzer et al., 2014) to more
abstract models implementing specific bio-inspired
features of modulated plasticity to perform cognitive
or behavioral tasks (Miconi, 2017; Fang et al., 2021).
Of course, the corresponding models will have differ-
ent levels of detail depending on the objective of the
study. The general function attributed to neuromod-
ulation is often modeled directly into deep RL agents
with neoHebbian learning, approximating the effects
of dopamine transmission in the brain as a reward
prediction error signal, and ignoring both the addi-
tional roles of dopamine in the brain, and the effects
of other neuromodulatory factors. Despite the big
simplifications carried by this approach, such models
can still be extremely valuable in constraining hy-
pothesis when studying the brain itself, for instance
in untangling the relations between RPEs and other
neuromodulatory functions. Of course, the same
framework also provides significant improvements
for RL agents performing in realistic environments
(Fang et al., 2021; Xing et al., 2022) or in complex
cognitive tasks (Miconi et al., 2020). On top of that,
neuromodulators can acquire different functions, de-
pending not only on the molecule, but also on the

transitions of activity of brain regions implicated
in a given behavior, and on the cell types present
in those regions (Lee and Dan, 2012; Minces et al.,
2017). However, research on neuromodulation as a
biological process is still relatively young, and ex-
tensive work, for instance on the functionality of the
receptors for these molecules, is needed to reach the
level of understanding required to implement them
in detailed models. Finally, another potential use of
neuromodulatory concepts in modeling learning is
to implement a modulatory signal without directly
conferring it any biologically derived feature while
allowing it to aid the performance of the network.
In this case, rather then modeling the effect of any
specific molecule, is the adaptive design of neuro-
modulatory systems that gets implemented in the
network (Miconi et al., 2020 Fang et al., 2021). Mi-
coni et al., 2020 constructed a differentiable frame-
work in which plasticity is optimized though gradient
descent, and can be applied to train and improve the
performance of backpropagation models in carrying
out a RL task. The author proposes the use of this
emergent modulating signal to facilitate the auto-
matic design of efficient, self-contained reinforcement
learning systems, with fine tuned eligibility traces
and improved reward-contingent Hebbian rules. Two
versions of the model are proposed. The first one is
more generally inspired by the modulation of net-
works (it does not model dopaminergic signalling nor
eligibility traces) and has the following form:

Hebbi,j(t+1)=Clip(Hebbi,j(t)+M(t)xi(t−1)xj(t)) (6)

Here, the variable Hebb accumulates the prod-
uct of pre- and post-synaptic activity (xj and xi,
respectively), constrained in the interval [-1, 1] by
the Clip(x) function. The output of the two neu-
rons i and j is represented by the variable x in the
timesteps (t) and (t − 1), while M(t) is the network-
computed, time-varying neuromodulatory signal.
The work also proposes a more bio-inspired version
of this update rule, accounting for the known effect
of dopamine and eligibility traces on Hebbian plastic-
ity in animal brains:

Hebbi,j(t + 1) = Clip(Hebbi,j(t) + M(t)ei,j(t)) (7)

ei,j(t + 1) = (1 − η)ei,j(t) + ηxi(t− 1)xj(t) (8)

Where the eligibility trace is present in the main
update rule, and is updated considering an exponen-
tial average of pre- and post-synaptic activity with a
decay factor η, formally equivalent to the previously
mentioned time constant: τe = 1/η. Considering the
sparsity of data regarding the effects and dynamics
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of neuromodulation in the literature, the introduc-
tion of a modulatory function that mimics the cur-
rently known features of the event in a framework
compatible with STDP (or some variant of Hebbian
learning) is a promising suggestion to aid models’
performance as well as their ability to explain brain
computation.

2.2.3 Modeling memory replay

Many of the findings regarding memory in the brain,
described in section 2.1.3, sparked the motivation
for a number of works investigating the computation
behind memory and the relevance of hippocampal-
cortical interactions in this context. Complemen-
tary Learning Systems (CLS) is a theoretical frame-
work in neuroscience according to which the brain
uses multiple, specialized learning systems to pro-
cess information. Research in CLS suggests that the
cortex and the hippocampus work together to han-
dle memory transfer from short-term to long-term
storage, with the hippocampus being a fast learning
system, that rapidly encodes specific memories, and
its interaction with the cortex constituting a slower
learning system, that uses memory replay to consol-
idate information (Kumaran et al., 2016; O’Reilly et
al., 2014; McClelland et al., 1995). CLS is therefore
roughly in accordance with the anatomical studies
discussed in section 2.1 (a few, more biologically de-
tailed views on CLS can also consider other regions,
as in the work of Atallah et al., 2004 where basal
ganglia is included). Recent theoretical neuroscience
advancements uncovered how the interplay between
this fast and slow learning systems through mem-
ory replay might in fact be covering the function of
optimizing generalization. The amount of consoli-
dation though memory replay from hippocampus to
cortex is also found to be dependent on the level of
predictability of the environment that is being expe-
rienced (W. Sun et al., 2023). As stated previously,
the principles behind memory replay and reinforce-
ment mechanisms are highly compatible, at least in
the brain. For this reason, studies successfully at-
tempted to implement CLS in TD learning, as in the
work of Blakeman and Mareschal, 2020, using deep
Q-learning networks (DQNs). Following a similar
route, W. Sun et al., 2023 investigated the theoreti-
cal framework of CLS by modeling it into a Hebbian
learning paradigm. From a Machine Learning (ML)
point of view, the necessity for this new theoretical
framework comes from the fact that ”blindly” trans-
ferring all data from a specialized fast memory unit
like the hippocampus to a generalization structure
such as the cortex would not allow the learning agent
to adapt to realistic settings. Looking at the brain

through ML lenses, this problem would not present
itself in noise-free environments, since the cortex of-
fers a huge parameter space and can hardly over-fit
(Hasson et al., 2020), but becomes relevant when
noise is present and for instance, reward inputs are
sparse. Uninterrupted learning from the same batch
of data can cause learning agents to pick up spuri-
ous correlation in those data, which means that hip-
pocampal replay has to be a moderated process that
allows to pick up general rules of different lived ex-
periences. Hence, a description of the modalities of
this information transfer, and ultimately of the re-
lationship between fast and slow memory processing
in learning is required, and especially so in noisy, re-
alistic environments. Conceptually, both in brains
and machines, the interplay of fast and slow learn-
ing systems is crucial to prevent one of the main
issues of RL described in section 1, namely, catas-
trophic interference. In this case, the fast system
would mainly record information from the current
environment, which would then be used to train the
slower learning system to consolidate generalized rep-
resentations (Botvinick et al., 2019). This is then one
way in which fairly direct inspiration from the bi-
ology of the brain can give significant insights into
how the big obstacles in RL can be tackled. The last
remaining step to achieve biologically plausible mem-
ory consolidation is to include the offline replay func-
tion in models, recent strategies at implementing it
can be found in the work of van de Ven et al., 2020
and Barry and Love, 2022, for a review, see Roscow
et al., 2021. Lastly, referring back to the findings of
W. Sun et al., 2023, consolidation via memory re-
play is postulated to be dependent on the inferred
predictability of an environment. This means that
the agent would assess through experience the degree
to which events in that environment are predictable,
and adjust memory consolidation based on that. Al-
though the assessment itself is subject-dependent
and often has various evolutionary constraints, the
mechanism that implements it is well known to be
neuromodulation. In fact, if the subject experiences
reward events, this assessment would just be com-
puting RPEs, a process that is already well estab-
lished in RL. These proofs of concept, at the frontier
between theoretical and computational neuroscience,
demonstrate how a neoHebbian account on learn-
ing, complete with a description of eligibility traces
(which, as highlighted in section 2.2.2, significantly
aids models performance in realistic environments
by modulating reward contingencies) can be com-
patible with the theories of memory replay (which is
believed to aid generalization of the learned reward
contingencies) by using common synaptic update
rules. A logical next step in this field of research
seems to be capitalizing on this compatibility, by
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constructing RL agents that, operating via spike tim-
ing, can support three factor learning, sustained ac-
tivity, as well as an efficient replay buffer that can
use these two principles to optimize generalization.

3 Conclusions

3.1 Discussion

There seem to be two main knowledge gaps impeding
the development of efficient bio-plausible RL mod-
els able to reflect brain computation. The first gap
is the previously mentioned sparsity of data around
neuromodulation, see section 2.2.2. Our knowledge
of neuromodulatory functions is still confined to a
description of the general effects of each neuromod-
ulator on a large scale, but not enough is known
about their activity on a network scale and the re-
sults of interaction between more neuromodulators.
As a result, in RL, RPE is considered when model-
ing neuromodulatory processes, without taking into
account that dopamine, which implements RPEs in
the brain, seems to have a variety of additional func-
tions in different areas and cell types. A few excep-
tions are starting to prove the validity of integrating
more realistic and diverse neuromodulatory functions
to aid RL models’ performance (Xing et al., 2022;
Zannone et al., 2018), or to advance our understand-
ing of these processes in the brain (Graupner and
Gutkin, 2009). The second gap revolves around de-
termining the best learning rule to apply to these RL
agents. In fact, eligibility traces do represent a nice
bridge between STDP and reward contingent modu-
lation, but only under the assumption that they can
always cover the temporal gap between action and
reward. A number of studies suggest that the brain
can learn reward contingencies even with substantial
delays, and once again, the timing of these plastic-
ity rules seem to vary between regions and cell types
(Suvrathan, 2019). Although the concept of plas-
ticity being driven by spike timing can represent a
good common mechanism for learning, a model that
is able to operate with three factor learning and sus-
tain an offline memory replay might require differen-
tial time-scales for its eligibility traces, for instance
depending on the function it is currently carrying
out. This approach is not unexplored in the Deep
RL field, since parameter dependencies in deep mod-
els constitute an issue when we want to maintain a
fixed eligibility trace (Kobayashi, 2022). The possi-
bility of expanding on STDP rules was also explored
in SNNs performing RL, since plasticity linked to
a fixed spike timing dependency seems to be a con-
straining factor when operating in dynamic settings
(Jimenez Rezende and Gerstner, 2014). Of course,

the current limits of knowledge set by experimental
neuroscience do not represent a valid reason to give
up advancing our understanding of RL in the brain
and in models. When it comes to deep RL with neo-
Hebbian learning, the main improvement given by
this implementation revolves around the ability to
face sparse reward, dynamic environments. While
the known mechanistic elements for a neoHebbian
principle are relatively well characterized in models,
it could be possible that further improvements can
be made in the fuzzier, more delicate realm of repre-
sentations. An example is given by the work of Ben-
Iwhiwhu et al., 2022, in which neuromodulation acts
on a meta-RL network that can inform better poli-
cies in complex environments and enrich the agent’s
representations. Furthermore, three factor learning is
still a global framework mainly directed towards re-
ward optimization, but more can be accounted for in
the interplay of short- and long-term rewards, which
seems to have a big influence in forming representa-
tions, creating complex action plans, and aiding gen-
eralization. The way to implement this more realistic
rewards and its integration in RL models is of course
an open area of debate, since one could approach the
problem either from a deep RL perspective, propos-
ing new architectures able to sustain this differential
rewards, but a potentially valid alternative can also
be to integrate new (possibly bio-inspired) systems
that can account for more than just reward to in-
crease depth in the agent’s decision-making (Silver et
al., 2021; Vamplew et al., 2022). Deep RL also sees
exciting new obstacles in the interplay of learning
modalities. As mentioned in section 2.2, neoHebbian
RL already mixes UL aspects to RL (not without
challenges). Explicitly expanding on this integration
could lead to obtaining agents able to perform learn-
ing in a broader sense of the term, that would have
reward maximization as just one facet of their capa-
bilities (Weidel et al., 2021). An ulterior interesting
addition would be to consider the constraints given
by evolution described in section 2.1.1, which could
inform prior inductive biases about the natural en-
vironment around us and the way we perceive it. A
theoretical framework that considers the evolution-
ary learning component while still accounting for the
shortcomings of a single reward maximization func-
tion is homeostatic learning (Keramati and Gutkin,
2014). In this perspective, the reinforcement signal
is not limited to rewards or predictions about re-
ward, but to the maintenance of a set of homeostatic
values in the face of changing environments, updat-
ing a temporal discount of physiological variables
(Laurençon et al., 2021; de Abril and Kanai, 2018).
Note that the idea of homeostatic learning can be
envisioned as an alternative or a complement to the
other approaches we refer. In sum, regarding future
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outlooks for this field of research, it seems more and
more important to highlight the need for theoretical
approaches to shine light on new potential avenues in
computational neuroscience, which could contribute
to models performing better in realistic environments
(aiding technology applications), as well as being
able to uncover new aspects of brain computation.
As mentioned in this review and postulated by sev-
eral studies, learning seems to involve at least two
speeds. At the microscopic, mechanistic scale, fast
synaptic transmission is accompanied by the slower
event of neuromodulation. In the mesoscopic, func-
tional realm, the human brain exploits two systems
of learning: a fast hippocampus-dependent process
which fine tunes representations, and a slow cortical-
dependent learning which optimizes generalization
and allows us to form a coherent view of the world
(Botvinick et al., 2019). Both fast and slow processes
are fundamentally important, and a functional brain
is only possible with the interaction of the two. Tak-
ing such interplay as a metaphor, we should learn
from the brain, and not discard the slower proceed-
ings of theoretical neuroscience in favour of a fast
paced, data-driven fine tuning of currently exist-
ing models. It is true that fast incremental progress
driven by advancing technologies can lead to explore
novel grounds for research, and indeed there is great
value in implementing current known biological fea-
tures in RL models to aid their performance, but
the slower efforts in understanding the theoretical
principles of neural computation are what allow us
to give direction and meaning to this new frontiers,
ultimately benefiting human development.

3.2 Interdisciplinary Reflections

3.2.1 Neuromorphic Computing Applications

The idea of imitating biological neurons by fusing
together the two elements of the von Neumann ar-
chitecture (memory and processing) is not only in-
teresting for the study of the brain, but also to aid
model’s computational efficiency. This problem arises
from the high energy consumption of fetching mas-
sive amounts of data from a memory unit to a pro-
cessing network. Holding memory in each processing
neuron in the network would greatly aid energy ef-
ficiency and computational costs, a possibility that
led to the creation of neuromorphic hardware able
to support this new bio-inspired framework. An
example of this framework is given by the memris-
tors, transistors that function as an analogue valve
of information (current) instead of as a switch with
a definite threshold. These can represent artificial
synapses that govern information flow via current re-
sistance (Thomas, 2013). Of course, implementing

all of these elements into a densely connected net-
work on a dedicated hardware is a huge challenge, in
the face of which different variations of this synaptic
structure were proposed. The structure of memris-
tors offers itself nicely for the use of SNNs, since it
can more easily account for spike timing. The main
use case for memristive devices is unsupervised learn-
ing following STDP rules (Bill and Legenstein, 2014).
However, reinforcement learning can also be imple-
mented along with the WTA dynamics of the SNN
(Mehonic et al., 2020). As stated, a non-von Neu-
mann architecture is especially useful for computa-
tional efficiency. for instance if we want to introduce
reward-modulated spike-timing dependent plasticity
(R-STDP) (Shi et al., 2021; Wunderlich et al., 2019).
The system also potentially allows to include a mem-
ory replay function. The need for innovative ways to
implement high number of synaptic connections and
communicating networks into a neuromorphic hard-
ware seems to be the current main obstacle to adapt
more complete bio-plausible RL frameworks into
neuromorphic computing. Candidate solution to face
it include implementing oscillator-based systems, in
which synapses are represented by oscillating waves
of current and their strengthening and weakening is
given by synchronization events between these waves,
the pattern of which could encode for a specific stim-
ulus or internal representation (Romera et al., 2018).

3.2.2 Studying the brain with targeted ma-
nipulations

Brain inspired models are getting more and more
effective in improving energy efficiency, but even
without considering the limitations of computational
costs, the problem of how to relate back these mod-
els to explain brain computation remains non-trivial.
If computational cost is on one end of the scale, the
degree of biological detail sits on the other, and the
trade-off needs to be adjusted according to the re-
search question at hand. A vivid example of the ap-
plications of biologically plausible RL models to un-
cover brain computation can be found in the study
of neuromodulators (see section 2.2.2). In this field,
different models are employed at different levels of
description to assess how their local effects on neu-
ral populations influences global connectivity and
ultimately, behavior. The functional nature of neu-
romodulation still needs to be uncovered, and be-
havioral neuroscience can provide significant data on
the interplay of these factors by silencing a specific
type of neuromodulator, or its effect on a given re-
gion. This data can then be confronted with ad-hoc
build RL models, which can potentially allow for a
multi-scale comparison with in vivo behavioral ex-
periments, and can be exploited as powerful explana-
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tory tools. In a future outlook, modelling the effects
of a single neuromodulator could aid crucial advance-
ments in understanding the roles of their interactions
in the human brain, as proposed by Mei et al., 2022.
Or, in more physiologically detailed models, we could
maintain the same neuromodulatory process across
different brain regions and cell types, to assess the
degree of relevant variability in that scenario. Fur-
thermore, extending the role of the functional study
of neuromodulators, a bio-realistic model could help
in understanding the effects of neurodegenerative dis-
eases (processes in which neuromodulation can be
significantly compromised) like Parkinson’s disease
(PD) (Liebenow et al., 2022), or it can help to un-
cover the neurobiological mechanisms of less explored
conditions, like Anhedonia (Kangas et al., 2022).

3.2.3 Robotics

A natural application to examine RL models that
face dynamic environments includes autonomous
agents able to interact with these environments
successfully, achieving desired goals. This impulse
pushed toward developments in the robotics field,
in which a few complications to the employment of
functional ML algorithms (and RL agents) need to
be considered. Firstly, practical challenges are to
be found in the implementation of efficient learn-
ing agents in the robot’s hardware, in a trade-off
between robustness towards real-world settings and
processing capabilities (Prorok et al., 2021). Emerg-
ing resilient behavior towards ecological settings can
also be generated by achieving complex reward struc-
tures or relying on homeostatic principles, as dis-
cussed in section 3.1. Furthermore, the RL agent
that must now be embodied in a physical structure
has to gather data from sensory input units. This
means sensory modules in the robot are progressively
generating data from lived experiences rather than
extracting data from an existing dataset. On top of
that, robots are supposed to manipulate the environ-
ment around them, causing dynamic changes to it, to
which the robot itself must adapt when carrying out
complex tasks. These can be considered obstacles
because the raw sensory input must be contextual-
ized by the robot itself in a coherent representation
of the task, held as a part of an explicit model of
the world, over which behavioral planning and con-
trol must be added to cause an action. In turn, the
robot acting on its surroundings updates this whole
chain of events continuously and therefore requires
constant adaptation to these changes (Hernández et
al., 2018). All these challenges would benefit from a
system operating within sparse data, dynamic set-
tings, ultimately able to address both the problem
of optimizing inductive bias and preventing catas-

trophic interference. RL agents developed in an SNN
or a deep network able to include neuromodulation
and memory replay could represent good candidates
to face these two main issues. The robot would also
need to be able to operate in a non-supervised fash-
ion, either defining correct rewards for the desired
task or following the right reinforced signals (for in-
stance, a measure of closeness to predictions). Cre-
ating an end-to-end learning robot would demand
the interplay of different learning modalities, a re-
quirement that is very hardly accomplished without
taking inspiration from biological brains. All of the
central themes described in this review are compati-
ble with these needs: biologically plausible deep RL
agents could help robotics in acquiring more com-
plex and realistic loss functions to navigate the real
world, even though the technical problems of run-
ning such framework in a performing hardware can-
not be ignored. Conceptually, catastrophic interfer-
ence and inductive biases are still the two main chal-
lenges in the field, since robotics aims at providing
agents able to navigate complex and dynamic set-
tings. Meta-learning as a framework proposes to face
the agent with a distribution of tasks, with the un-
derlying goal of exploiting their commonalities to aid
its performance by constructing effective priors. The
process is led by the ability of the agent to generalize
across different environments, and its improvement
can bring clear advantages in the field (Clavera et
al., 2018; Finn et al., 2017). Having realistic priors
would greatly aid human-machine interaction since
effective cooperation between the two is enhanced by
having similar inductive biases, which would give rise
to more easily explainable behavior. Meta-learning
algorithms can be implemented in RL agents and
aided with human-like representations (Arndt et
al., 2020). Approaches to implement it also include
training specific architectures to learn human-like
prior knowledge about an environment and inform
an existing RL agent, in an attempt to approach the
function of human episodic memory (Ritter et al.,
2018). Alternatively, realistic priors can be extracted
from input data, in case information about human
priors on the environment is available (Kumar et al.,
2022). In our case, the memory replay unit would
aid the machines in learning natural priors, while
efficient memory storage can help to prevent catas-
trophic interference.
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Frémaux, N., & Gerstner, W. (2016). Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of
Three-Factor Learning Rules. Frontiers in Neural Circuits, 9. https://doi.org/10.3389/fncir.2015.
00085
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A., Schreiber, K., Stöckel, D., Pehle, C., Billaudelle, S., Kiene, G., Mauch, C., Schemmel, J., Meier,
K., & Petrovici, M. A. (2019). Demonstrating Advantages of Neuromorphic Computation: A Pilot
Study. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00260

Xing, J., Zou, X., & Krichmar, J. L. (2020). Neuromodulated Patience for Robot and Self-Driving Vehicle
Navigation. 2020 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/
10.1109/IJCNN48605.2020.9206642

Xing, J., Zou, X., Pilly, P. K., Ketz, N. A., & Krichmar, J. L. (2022). Adapting to Environment Changes
Through Neuromodulation of Reinforcement Learning. https://doi.org/10.1007/978-3-031-16770-6 10

Yang, X., Song, Z., King, I., & Xu, Z. (2022). A Survey on Deep Semi-Supervised Learning. IEEE Transac-
tions on Knowledge and Data Engineering, 1–20. https://doi.org/10.1109/TKDE.2022.3220219

Zador, A. M. (2019). A critique of pure learning and what artificial neural networks can learn from animal
brains. Nature Communications, 10 (1), 3770. https://doi.org/10.1038/s41467-019-11786-6

Zamanillo, D., Sprengel, R., Hvalby, Ø., Jensen, V., Burnashev, N., Rozov, A., Kaiser, K. M. M., Köster,
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